Analysis of students' mathematical communication ability on student learning styles

Alwi Asgafi1, M. Saidun Anwar1, Choirudin1,*, Rani Darmayanti2, and Usmiyatun2

1Universitas Ma’arif Lampung, Indonesia
2University of Muhammadiyah Malang, Indonesia
*Corresponding author: choirudin.umala@gmail.com

KEYWORDS
- analysis
- learning styles
- mathematical communication

ABSTRACT
Students' mathematical communication ability is their ability to communicate mathematical concepts orally and in writing. The inability of students to fulfill indicators of their ability to relate something that happens to mathematical ideas, in addition to the failure of students to explain concepts, situations, and mathematical relationships, is the root cause of students' low ability to communicate mathematically. This study aimed to determine the mathematical communication abilities of students whose learning styles ranged from high to low. This research is descriptive qualitative research. A qualitative approach was chosen because this study used written and oral data. Class VII students of MTs Ma’arif Roudlotut Tholibin Metro, consisting of six male students and ten female students with various learning styles, were the subjects of this study. This study used interviews, learning-style questionnaires, and tests to collect data. Sources of information were obtained from the results of surveys on learning styles, tests, and interviews acquired from students. After being seen and researched, the results show that different learning styles have different abilities in mathematical communication. Based on student learning styles, the test scores for auditory learning styles are 77, visual 65, kinesthetic 62.5, and read and write 70. Therefore, it can be concluded that compared to students who use other learning styles, students with visual learning styles have better mathematical communication abilities.

© The Author(s) 2023

1. INTRODUCTION

Mathematics has an essential task as a representative language to recognize valid correspondence, where the goals of learning mathematics include conveying ideas or thoughts and then being able to demonstrate mathematics using complete sentences, pictures, tables, graphs, or other media that describe an event or situation (Permendikbud, 2014). The purpose of this Permendikbud is in line with the targets defined in the NCTM (Adawiyyah & Rifqi, 2022; Dewi et al, 2015; Nuraeni & Luritawaty, 2016; Ulfah & Felicia, 2019), which reveals the rules of five cycles in dealing with problems, proof and thinking, connection, communication, and representation (Adawiyyah & Rifqi, 2022; Cholily et al, 2023; Usmiyatun et al, 2023). Based on that explanation, it can be concluded that mathematical communication skills are needed when learning mathematics.

Mathematical communication ability is a student's expertise when communicating the main ideas of mathematics in writing or orally. Students' mathematical communication skills can be trained with learning steps at school, and one of them is learning mathematics (Asuro & Fitri, 2020; Purwati & Wuri, 2022). This can happen because of the elements of mathematics, which is the study of thinking that can further develop students' reasoning abilities. As a result, the development of mathematical communication skills relies heavily on mathematics.

According to (Adawiyyah & Rifqi, 2022; Hafizha et al, 2022), a learning style is an approach that explains what students do when learning or taking steps to concentrate on different processes and ideas. Meanwhile, according to Winkel, learning style is a step or way of learning that is typical of students. Each student has a different learning style, but some have the same one. Therefore, each individual has additional expertise in capturing subject knowledge, especially mathematics. According to (Adawiyyah & Rifqi, 2022; Mufidah, 2017) in their quotations, it states that according to Neil Fleming, learning styles are divided into four, namely: Aural/auditory (A), Visual (V), Kinesthetic (K), and Read and Write (R) (Mufidah, 2017).

Research on mathematical communication skills has previously been carried out by (Wijayanti et al, 2019), which shows that learning styles are not proven to have a relationship with mathematical communication skills. Meanwhile, research conducted in this journal found a link between learning styles and students' mathematical communication skills. In addition, other studies have been conducted by (Noviyana et al, 2019), who found that learning styles influence student achievement; these results are almost the same as what was done in writing this journal. Then, the re-
2. METHOD

This research is included in the descriptive qualitative research. The process is carried out following existing conditions and written data and drawings. Qualitative research methods continue to be evaluated. Researchers participate directly in the field in the research process and record the data found, then make a research report in a systematic and detailed manner (Adawiyah & Rifqi, 2022; Fadli, 2021; Suyitno, 2018). Purposive sampling, also known as a method of selecting data sources with specific considerations, is also used to select research subjects. This selection is based on researchers who use qualitative research methods (Novita et al, 2018; Wijayanti et al, 2019).

One of the reasons for conducting this research was to describe students' mathematical communication abilities when viewed based on learning style groupings. The ability studied is the ability of mathematical communication to write (written text). Mathematical expression (a mathematical expression) explains some things that need to be used to measure student abilities, including 1) Making mathematical models in pictures, tables, and graphs (drawing), 2) Expressing or implementing events in our daily lives in the form of language or math symbols. (a mathematical expression). Moreover, 3) Provide answers in written form in their language (written) (Adawiyah & Rifqi, 2022; Ashim et al, 2019; Sari & Pujastuti, 2022; Usmiyatun et al, 2023).

The data collection technique was interviews with mathematics teachers and students to obtain initial data. The information obtained is based on what happened in the field; students' learning styles were known through learning style questionnaires; to measure students' mathematical communication abilities, researchers used tests, and to strengthen data, researchers used documentation. The data collection technique was interviews with mathematics teachers and students to obtain initial data. The information obtained is based on what happened in the field; students' learning styles were known through learning style questionnaires; to measure students' mathematical communication abilities, researchers use tests, and to strengthen data, researchers use documentation (Adawiyah & Rifqi, 2022; Kusumaningsih et al, 2020; Muthmainnah et al, 2019; Sugianto et al, 2023).

As Miles and Huberman explained, data reduction, data presentation, and conclusion are part of this study's analysis (Septiana et al, 2018; Utomo et al, 2023). Method triangulation is used to test the validity of the data, namely by comparing data from the results of interviews, documentation, questionnaires, and tests (Sugiyono, 2018).

3. RESULTS AND DISCUSSION

The next step is to analyze the data that has been collected. Without the help of specific statistical programs such as SPSS, data processing is done manually using the Microsoft Excel application. Data is reduced and presented, and conclusions are drawn during data analysis. The data analysis was carried out in several ways, including data reduction data presentation, and conclusions were drawn. The following is an analysis of the data that has been collected.

After collecting the data, the following are the results of the learning style questionnaire: The student learning style questionnaire is based on filling in the questionnaire conducted by the students, and the following data is obtained:

Based on Table 1 from the results of a survey of 16 students, it can be explained that most students have a visual learning style with an average mark of 75 and a percentage of 37.5%, auditory with an average mark of 67.5 and a rate of 31.25%, kinesthetic with an average yield of 66.875 and speed of 25%, and read/write with a result of 64.375 and percentage of 6.25%.

Mathematical communication skills based on learning style groupings obtained the distribution of abilities as follows:

Table 2 explains the state of students' mathematical communication abilities based on group data with an overall score of 77 on visual, 65 on auditory, 62.5 on kinesthetic, and 70 on read/write.

Based on the total score obtained, students' average final mathematical communication skills score is 68.5. Based on Ngalim Purwanto's opinion, the score obtained belongs to the excellent category (Sugiyono, 2018).

Students can complete the idea indicators in written form. In addition, students can also express questions or answers to incidents or events that occur every day. Students can also give their answers in everyday language. However, the student's answers still needed to be quite right on several questions.
Students can complete the idea indicators in written form. In addition, students can also express questions or answers to events or events that occur daily and solve questions with the correct answers.

After being analyzed, it can be explained that students with a learning style in mathematical communication skills have advantages in mathematical expression (mathematical expression) and writing skills (written). Still, students with an auditory learning style must improve their ability to answer (accuracy).

Students can solve questions with good enough answers. However, students with a read-and-write learning style must improve in expressing questions or answers to everyday events. In addition, students need to improve in writing answers in their language.

After being analyzed, it can be explained that students with a learning style in mathematical communication skills have an advantage in the accuracy of answers, even though the answers seem very short. However, students with a read-and-write learning style need to improve in expressing mathematics (mathematical expression) and writing skills (written).

After being analyzed, it can be explained that students with learning styles in mathematical communication skills have advantages in mathematical expression and writing abilities and have benefits in answering abilities (accuracy of answers).

Students with a kinesthetic learning style can solve questions with pretty good answers; besides, they have advantages in writing answers in their language (written). However, students with a kinesthetic learning style must improve in expressing questions or answers to everyday events. This goes hand in hand with (Turmuzi & Kurniawan, 2021) research, which states that the recapitulation of student answers and the results of converting student scores with sequential percentages, especially in questions with indicators of reading with an understanding of a mathematical representation.

After being analyzed, it can be explained that students with learning styles in mathematical communication skills have advantages in the accuracy of answers and writing skills, even though the answers seem very short. However, students with kinesthetic learning styles need to improve in expressing mathematics (mathematical expression). This is in line with the research of (Aliffianti et al, 2022), which stated that the study results showed that the mathematical communication abilities of students with visual learning styles were sufficient. Students with auditory and kinesthetic learning styles had mathematical communication abilities in the lower class (Aliffianti et al, 2022).

After all the data has been collected and managed, the mathematical communication ability test results for class VII students at MTs are obtained. Ma’arif Roudlotut Tholibin, whose initials are SS, said that “the existing learning activities, especially mathematics, seem boring” (SS, Personal communication, 29 April 2023). Likewise, researchers’ contact with other students with the initials AID also said that learning mathematics could have been more varied and exciting.

So, the visual learning style has advantages from the ability to express mathematics (a mathematical expression), write in one’s language (written), and answer questions. This is in line with research (Nuraeni & Lurisawaty, 2016), which states that the achievement of students’ mathematical communication skills who get think-talk-write learning strategies is better than students who get conventional learning.

4. CONCLUSION

As the results and discussion obtained, it can be concluded that learning styles influence students’ mathematical communication abilities. As well as the accuracy of learning styles has a positive influence on students’ mathematical communication skills. The more appropriate the learning style used during the learning process, the higher the students’ mathematical communication skills. According to the findings of this study, researchers believe that students’ learning styles influence the level of their mathematical communication skills. Therefore, for students to improve their mathematical communication skills, they must pay attention to learning that must be designed as well as possible.

References


