Effectiveness of Preventive and Predictive Maintenance in Improving Machine Performance: A Systematic Review

Authors

  • Enik Sulistyowati Universitas Nahdlatul Ulama Pasuruan, Indonesia
  • Anurag Hazarika Guest Faculty-Tezpur University, India
  • Samikshya Madhukullya Sociology University of Science and Technology, Meghalaya, India

DOI:

https://doi.org/10.51773/ajcd.v4i2.278

Keywords:

Preventive maintenance, predictive maintenance, machine performance, Improving Machine

Abstract

Effective machine maintenance is key to ensuring productivity and operational efficiency in the industrial sector, where although preventive maintenance has become the standard, technological developments are now introducing more advanced predictive maintenance strategies, but a comprehensive comparison of the effectiveness of these two approaches in improving machine performance is still limited. This study aims to conduct a systematic review and meta-analysis of the efficacy of preventive and predictive maintenance methods, especially in the manufacturing industry, through a literature search in Scopus, Web of Science, and IEEE Xplore databases with related keywords, where empirical studies comparing both methods and their impacts on machine performance, including availability, reliability, and maintenance costs, are included. Meta-analysis was used to measure the difference in effectiveness between the methods, with study quality assessed using the AMSTAR checklist. The results showed that of the 25 studies that met the inclusion criteria, predictive maintenance was shown to be more effective in improving availability than preventive maintenance (effect size = 0.75, 95% CI: 0.60-0.90, p < 0.01), where factors such as cost, technology level, and machine type influenced the selection of the optimal maintenance method. This systematic review indicates that predictive maintenance is more effective in improving machine performance than preventive methods. However, the choice of the optimal method must be tailored to the specific industry context, and these findings are essential for decision-making in industrial maintenance management.

References

Abujaber, A. A., Albalkhi, I., Imam, Y., Nashwan, A., Akhtar, N., & Alkhawaldeh, I. M. (2024). Machine learning-based prognostication of mortality in stroke patients. Heliyon, 10(7). https://doi.org/10.1016/j.heliyon.2024.e28869

Ahmed, M., Usmiyatun, U., Darmayanti, R., Purnamasari, P., & Choirudin, C. (2021). CODE ATI: Sewing activities with various patterns affect the cognitive aspects of kindergarten children? AMCA Journal of Education and Behavioral Change, 1(1), 22–25.

Alnaqbi, A., Zeiada, W., & Al-Khateeb, G. G. (2024). Machine learning modeling of pavement performance and IRI prediction in flexible pavement. Innovative Infrastructure Solutions, 9(10). https://doi.org/10.1007/s41062-024-01688-y

Anhar, J., Darmayanti, R., & Usmiyatun, U. (2023). Pengaruh Kompetensi Guru Agama Islam Terhadap Implementasi Manajemen Sumber Daya Manusia Di Madrasah Tsanawiyah. Assyfa Journal of Islamic Studies, 1(1), 13–23.

Bagnara, M. (2024). Asset Pricing and Machine Learning: A critical review. Journal of Economic Surveys, 38(1). https://doi.org/10.1111/joes.12532

Barnes, M. P., & Greer, P. B. (2017). Evaluation of the truebeam machine performance check (MPC): Mechanical and collimation checks. Journal of Applied Clinical Medical Physics, 18(3). https://doi.org/10.1002/acm2.12072

Barnes, M. P., Pomare, D., Menk, F. W., Moraro, B., & Greer, P. B. (2018). Evaluation of the truebeam machine performance check (MPC): OBI X-ray tube alignment procedure. Journal of Applied Clinical Medical Physics, 19(6). https://doi.org/10.1002/acm2.12445

Boyacı, T., Canyakmaz, C., & de Véricourt, F. (2024). Human and Machine: The Impact of Machine Input on Decision Making Under Cognitive Limitations. Management Science, 70(2). https://doi.org/10.1287/mnsc.2023.4744

Chen, Y., Calabrese, R., & Martin-Barragan, B. (2024). Interpretable machine learning for imbalanced credit scoring datasets. European Journal of Operational Research, 312(1). https://doi.org/10.1016/j.ejor.2023.06.036

Clivio, A., Vanetti, E., Rose, S., Nicolini, G., Belosi, M. F., Cozzi, L., Baltes, C., & Fogliata, A. (2015). Evaluation of the Machine Performance Check application for TrueBeam Linac. Radiation Oncology, 10(1). https://doi.org/10.1186/s13014-015-0381-0

Darmayanti, R., Masodi, M., & Rizkiya, N. B. (2025). Pendidikan matematika dan sains di Eropa : sejarah, teori, dan terapan. Lima Aksara, 1, 1–252.

Darmayanti, R., Milshteyn, Y., & Kashap, A. M. (2023). Green economy, sustainability and implementation before, during, and after the covid-19 pandemic in Indonesia. Revenue Journal: Management and Entrepreneurship, 1(1), 27–33.

Darmayanti, R., ruf, D. M., Hasanudin, H., Eriyanti, R. W., & Hudha, A. M. (2024). Rancangan penelitian. CV. Bildung Nusantara, 1, 1–320.

Darmayanti, R., Utomo, D. P., Choirudin, C., & Usmiyatun, U. (2023). E-MODULE GUIDED DISCOVERY LEARNING MODEL IN THE HOTS-BASED INDEPENDENT LEARNING CURRICULUM. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 12(1), 1–10.

El Mestari, S. Z., Lenzini, G., & Demirci, H. (2024). Preserving data privacy in machine learning systems. Computers and Security, 137. https://doi.org/10.1016/j.cose.2023.103605

Elkateb, S., Métwalli, A., Shendy, A., & Abu-Elanien, A. E. B. (2024). Machine learning and IoT – Based predictive maintenance approach for industrial applications. Alexandria Engineering Journal, 88. https://doi.org/10.1016/j.aej.2023.12.065

Fang, F., Chung, W., Ventre, C., Basios, M., Kanthan, L., Li, L., & Wu, F. (2024). Ascertaining price formation in cryptocurrency markets with machine learning. European Journal of Finance, 30(1). https://doi.org/10.1080/1351847X.2021.1908390

Fauza, M. R., Baiduri, B., Inganah, S., Sugianto, R., & Darmayanti, R. (2023). Urgensi Kebutuhan Komik: Desain Pengembangan Media Matematika Berwawasan Kearifan Lokal di Medan. Delta-Phi: Jurnal Pendidikan Matematika, 1(2), 130–146.

Forero-Corba, W., & Bennasar, F. N. (2024). Techniques and applications of Machine Learning and Artificial Intelligence in education: a systematic review. RIED-Revista Iberoamericana de Educacion a Distancia, 27(1). https://doi.org/10.5944/ried.27.1.37491

Gardas, R., & Narwane, S. (2024). An analysis of critical factors for adopting machine learning in manufacturing supply chains. Decision Analytics Journal, 10. https://doi.org/10.1016/j.dajour.2023.100377

Gęca, J. (2020). PERFORMANCE COMPARISON OF MACHINE LEARNING ALGORITHMS FOR PREDICTIVE MAINTENANCE. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska, 10(3). https://doi.org/10.35784/iapgos.1834

Ghafoori, M., Abdallah, M., & Ozbek, M. E. (2024). Machine Learning–Based Bridge Maintenance Optimization Model for Maximizing Performance within Available Annual Budgets. Journal of Bridge Engineering, 29(4). https://doi.org/10.1061/jbenf2.beeng-6436

Guo, Y., Lim, A., Rodrigues, B., & Yu, S. (2007). Machine scheduling performance with maintenance and failure. Mathematical and Computer Modelling, 45(9–10). https://doi.org/10.1016/j.mcm.2006.09.018

Haanurat, A. I., Darmayanti, R., & Choirudin, C. (2024). Journal submission challenges: mentoring and training students in open journal system scientific paper publication. Jurnal Inovasi Dan Pengembangan Hasil Pengabdian Masyarakat, 2(1), 158–172.

In’am, A., Darmayanti, R., Maryanto, B. P. A., Sah, R. W. A., & Rahmah, K. (2023). DEVELOPMENT LEARNING MEDIA E.A.V ON MATHEMATICAL CONNECTION ABILITY OF JUNIOR HIGH SCHOOL. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 12(1). https://doi.org/10.24127/ajpm.v12i1.6267

Kayikci, S., & Khoshgoftaar, T. M. (2024). Blockchain meets machine learning: a survey. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-023-00852-y

Lee, J. (1995). Machine performance monitoring and proactive maintenance in computer-integrated manufacturing: Review and perspective. International Journal of Computer Integrated Manufacturing, 8(5). https://doi.org/10.1080/09511929508944664

Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., & Nandi, A. K. (2020). Applications of machine learning to machine fault diagnosis: A review and roadmap. In Mechanical Systems and Signal Processing (Vol. 138). https://doi.org/10.1016/j.ymssp.2019.106587

Lubis, M., Nurhakim, M., Amin, S., & Darmayanti, R. (2024). Empowering voices: Muhammadiyah journey through theology of al-ashr and ummah development. AMCA Journal of Religion and Society, 4(1), 11–20.

Maharani, A. D., Rahmawati, A. Y., Sulistyowati, E., & Prihatin, S. (2019). Pengaruh Pemberian Jus Semangka Kuning (Citrullus Lanatus) Terhadap Kelelahan Otot Anaerobik Pada Atlet Sepakbola. Jurnal Riset Gizi, 7(1), 69–74.

Mubarok, M. Z., Subandi, M., Yusuf, M., & Darmayanti, R. (2023). Efforts to improve tajwid learning using the An-Nahdliyah method in Diniyah students. Assyfa Journal of Islamic Studies, 1(1), 99–109.

Muhammad, I., Darmayanti, R., Arif, V. R., & Afolaranmi, A. O. (2023). Discovery Learning Research in Mathematics Learning: A Bibliometric Review. Delta-Phi: Jurnal Pendidikan Matematika, 1(1), 26–33.

Murray, S., Xia, Y., & Xiao, H. (2024). Charting by machines. Journal of Financial Economics, 153. https://doi.org/10.1016/j.jfineco.2024.103791

Ningrum, N., Ambarwati, R., & Sulistyowati, E. (2019). Pengaruh konseling gizi dengan media booklet terhadap konsumsi sayur buah dan fast food pada remaja obesitas. Jurnal Riset Gizi, 7(2), 115–119.

Ouadah, A., Zemmouchi-Ghomari, L., & Salhi, N. (2022). Selecting an appropriate supervised machine learning algorithm for predictive maintenance. International Journal of Advanced Manufacturing Technology, 119(7–8). https://doi.org/10.1007/s00170-021-08551-9

Quanjin, M., Rejab, M. R. M., Kumar, N. M., & Idris, M. S. (2019). Experimental assessment of the 3-axis filament winding machine performance. Results in Engineering, 2. https://doi.org/10.1016/j.rineng.2019.100017

Rahman, F., Sugiono, S., Sonief, A. A., & Novareza, O. (2022). OPTIMIZATION MAINTENANCE PERFORMANCE LEVEL THROUGH COLLABORATION OF OVERALL EQUIPMENT EFFECTIVENESS AND MACHINE RELIABILITY. Journal of Applied Engineering Science, 20(3). https://doi.org/10.5937/jaes0-35189

Ramzan, M. B., Jamshaid, H., Usman, I., & Mishra, R. (2022). Development and Evaluation of Overall Equipment Effectiveness of Knitting Machines Using Statistical Tools. SAGE Open, 12(2). https://doi.org/10.1177/21582440221091249

Robkhobkhonburi, P., & Samattapapong, N. (2024). A development of an OEE for machineries health monitoring in water production plant for specific community areas Case Study: Water Production Plant Unit, Department of Logistics Engineering, Engineering Faculty Rajamangala University of Technology Rattanakosin (RMUTR). ACM International Conference Proceeding Series, 319 – 328. https://doi.org/10.1145/3664968.3665011

Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.2976199

Salawu, E. Y., Awoyemi, O. O., Akerekan, O. E., Afolalu, S. A., Kayode, J. F., Ongbali, S. O., Airewa, I., & Edun, B. M. (2023). Impact of Maintenance on Machine Reliability: A Review. In S. K. S. (Ed.), E3S Web of Conferences (Vol. 430). EDP Sciences. https://doi.org/10.1051/e3sconf/202343001226

Santiago, P., Alves, F. R. V, & Darmayanti, R. (2023). GeoGebra in the light of the Semiotic Representation Registers Theory: an international Olympic didactic sequence. Assyfa Learning Journal, 1(2), 73–90.

Solehudin, H., Darmayanti, R., Agustin, F. W., & Santoso, C. R. (2023). Navigating the Future: AI, Floods, Politics, and Entrepreneurship in Management Operations for Resilient Societies in Jakarta. Revenue Journal: Management and Entrepreneurship, 1(1), 87–109.

Spitaels, L., Nieto Fuentes, E., Rivière-Lorphèvre, E., Arrazola, P. J., & Ducobu, F. (2024). A Systematic Method for Assessing the Machine Performance of Material Extrusion Printers. Journal of Manufacturing and Materials Processing, 8(1). https://doi.org/10.3390/jmmp8010036

Sulistyowati, E., & Lukmandono, L. (2021). Usulan Perbaikan Efektivitas Mesin GDX2-NV dan C-600 melalui Fault Tree Analysis. Jurnal SENOPATI: Sustainability, Ergonomics, Optimization, and Application ….

Sulistyowati, E., Mujiono, M., & Hikmah, K. (2022). Daur Ulang Sampah Botol Plastik Melalui Kreativitas Kerajinan Tangan Menjadi Barang Bernilai Ekonomi Di Desa Lemahbang Pasuruan. PROSIDING SEMINAR NASIONAL PENGABDIAN KEPADA MASYARAKAT, 2(1), 12–26.

Sulistyowati, E., Wijaningsih, W., & Mintarsih, S. N. (2015). Pengaruh substitusi tepung kedelai dan tepung ikan teri terhadap kadar protein dan kalsium crackers. Jurnal Riset Kesehatan, 4(3), 813–818.

Sulistyowati, E., Zulkif, S. M., Sofiyulloh, S., Azis, A., Hendratama, H., Riyana, I., & ... (2024). Pemanfaatan limbah sampah plastik menjadi taman ecobrick melalui metode participatory action research di Desa Tambak Lekok Kabupaten Pasuruan. Jurnal Penelitian Dan Pengabdian Masyarakat, 2(1), 125–133.

Triono, T., Darmayanti, R., Saputra, N. D., Afifah, A., & Makwana, G. (2023). Open Journal System: Assistance and training in submitting scientific journals to be well-indexed in Google Scholar. Jurnal Inovasi Dan Pengembangan Hasil Pengabdian Masyarakat, 1(2), 106–114.

Usmiyatun, U., Sah, R. W. A., & Darmayanti, R. (2023). Design Development of Audiovisual Teaching Materials for Canva Application-based Reading Skills in Early Childhood. Caksana Journal: Early Childhood Education, 4(1), 1–12.

Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., & Rellermeyer, J. S. (2020). A Survey on Distributed Machine Learning. In ACM Computing Surveys (Vol. 53, Issue 2). https://doi.org/10.1145/3377454

Wang, H., Wu, H., He, Z., Huang, L., & Church, K. W. (2022). Progress in Machine Translation. In Engineering (Vol. 18). https://doi.org/10.1016/j.eng.2021.03.023

Wati, W. A. A., Jaelani, M., & Sulistyowati, E. (2019). Pengaruh Smoothies Kombinasi Aneka Buah Dan Sayur Terhadap Penurunan Kadar Kolesterol Total. Jurnal Riset Gizi, 7(1), 1–8.

Zahroh, U., Rachmawati, N. I., & Darmayanti, R. (2023). Significance of Collaborative Learning Guidelines in 21st Century Education on Functional Limits Material in Madrasah Tsanawiyah. Assyfa Journal of Islamic Studies, 1(2), 155–161.

Published

2024-07-27

How to Cite

Sulistyowati, E., Hazarika, A., & Madhukullya, S. (2024). Effectiveness of Preventive and Predictive Maintenance in Improving Machine Performance: A Systematic Review. AMCA Journal of Community Development, 4(2). https://doi.org/10.51773/ajcd.v4i2.278